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Abstract— Interactive segmentation (IS) using minimal
prompts like points and bounding boxes facilitates rapid image
annotation, which is crucial for enhancing data-driven deep
learning methods. Traditional IS methods, however, process only
one target per interaction, leading to inefficiency when annotating
multiple identical-class objects in remote sensing imagery (RSI).
To address this issue, we present a new task—identical-class
object detection (ICOD) for rapid IS in RSI. This task aims
to only identify and detect all identical-class targets within an
image, guided by a specific category target in the image with
its mask. For this task, we propose an ICOD network (ICODet)
with a two-stage object detection framework, which consists of a
backbone, feature similarity analysis module (S3QFM), and an
identical-class object detector. In particular, the S3QFM analyzes
feature similarities from images and support objects at both
feature-space and semantic levels, generating similarity maps.
These maps are processed by a region proposal network (RPN)
to extract target-level features, which are then refined through
a simple feature comparison module and classified to precisely
identify identical-class targets. To evaluate the effectiveness of
this method, we construct two datasets for the ICOD task: one
containing a diverse set of buildings and another containing
multicategory RSI objects. Experimental results show that our
method outperforms the compared methods on both datasets.
This research introduces a new method for rapid IS of RSI
and advances the development of fast interaction modes, offering
significant practical value for data production and fundamental
applications in the remote sensing community.

Index Terms— Identical-class object detection (ICOD), image
feature similarity analysis, interactive segmentation (IS), remote
sensing images.

I. INTRODUCTION

THE development of remote sensing technology has
enabled the wide application of high-resolution remote
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sensing imagery (RSI), providing detailed views of the Earth’s
surface [1], [2], [3], [4]. Extracting valuable information
from these images is crucial for applications in land cover
classification, change detection, resource management, and
disaster monitoring [5], [6], [7]. With the accumulation of
extensive datasets, methods based on deep learning have
achieved remarkable performance in the automatic process-
ing of RSI tasks, yet their success heavily depends on the
availability of high-quality annotated data [8], [9], [10]. The
process of manual annotation is, however, time-consuming
and costly, becoming a bottleneck in the field’s development.
Interactive segmentation (IS) technology [11] emerged as a
solution, offering an efficient way to segment objects in
images with minimal user input—such as clicking, scrib-
bling, or boxes—significantly accelerating the generation of
high-quality annotated samples.

Recent works [12], [13], [14] in deep learning-based IS
technology have garnered significant attention for their abil-
ity to efficiently segment objects from images. IS methods
segment objects from images using minimal prompts, such as
marking a few points, drawing a box, or making scribbles on
the target object as positive samples, and points outside the
target object as negative samples. These prompts effectively
guide machine learning algorithms to accurately segment
objects of interest from images. Several approaches are highly
efficient, requiring only a single point or box to accurately
segment the target [15], [16]. All these methods, however,
share a critical limitation: they can only segment one target at a
time. This limitation is particularly significant in the context of
remote sensing images, which often contain a large number of
identical-class targets. In such cases, individually segmenting
each target individually is time-consuming and inefficient,
requiring the development of more advanced solutions that
can handle multiple targets simultaneously.

To rapidly extract all identical-class targets in high-
resolution RSI, we design a new and heuristic fast IS scheme,
as shown in Fig. 1. This scheme first segments a building
target by an IS model. Subsequently, the segmented target is
used as a support one to retrieve and detect all identical-class
ones within the image, marking them with boxes. Then, the
IS model is applied for precise segmentation of all the boxed
targets. Finally, interactive adjustments are made for the targets
in the segmentation results that require optimization. The key
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Fig. 1. Novel heuristic scheme for faster IS of all buildings simultaneously.
The IS model represents the IS model. The proposed ICODet rapidly detects
all objects of the identical class (highlighted with yellow dotted-line boxes)
in images, guided by a support object with its mask.

innovation in our scheme lies in the introduction of a new
task—identical class object detection (ICOD). The ICOD task
is a subtask of the IS task designed for simultaneous IS of
identical-class objects within an image. This task aims to query
and detect all objects of the same class in an image based
on a support object and its mask. It ingeniously leverages
the characteristic of RSI, where geographically proximate
identical-class objects typically exhibit visual similarity.

The proposed task is based on image feature similarity
metrics, with similar ones, including image retrieval, few-shot
object detection (FSOD), and object counting, as illustrated
in Fig. 2. Image retrieval [17], [18] involves searching for
similar images in a large image database based on text
descriptions or reference images; FSOD [19], [20] identifies
and locates objects in images under conditions of limited
annotated samples; class-agnostic object counting [21], [22]
involves calculating the number of specific type objects in
images or video frames by exploiting the image self-similarity
property. Compared to these tasks, the work in this article
focuses only on querying all targets in the same category
as the supporting targets and outputting their locations. It is
worth noting that one-shot object detection [23], similar to our
method, is a specialized case within FSOD. The approach,
however, requires the model to be pretrained using samples
from established base classes. Subsequently, to detect objects
in new categories, the model needs only a support sample to
accurately identify and locate objects from these previously
unseen categories. Specifically, the ICOD task focuses on
detecting only the objects that belong to the same class as the
support target without detecting objects from other categories.
It is specifically designed to address the challenges inherent
in RSI, where multiple objects of the same class are present,
significant variations exist across different regions, and there is
a critical need for rapid IS. Through the comparative analysis
presented in Table I, we demonstrate the distinctions among
these tasks.

Based on this new sub-task, we propose a new
identical-class object detection network (ICODet) for detecting
objects of the same class at the regional/image level in
RSI. The proposed network is designed by using similarity
metrics-based deep features [24] and a two-stage object detec-

TABLE I
DIFFERENCES AMONG FOUR TASKS USING IMAGE FEATURE SIMILARITY

Fig. 2. Various tasks based on image feature similarity include: (a) image
retrieval, (b) FSOD, (c) objection counting, (d) ICOD.

tion architecture [25]. First of all, we use convolutional neural
networks (CNNs) [26] to extract high-level features from both
an image and its support target. Subsequently, we design
semantic and feature similarity analysis module (S3QFM) to
separately analyze the similarities between the support target
features and the queried image features in both semantic and
spatial dimensions. The results from these similarity analyses
are then fused to derive a comprehensive feature of similarity
metrics. Following this, a region proposal network (RPN)
[25] is employed to identify the preliminary positions and
extract corresponding features of the queried targets. Finally,
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by applying a straightforward feature similarity comparison
module (FSCM) between the features of the preliminary
queried targets and the support features, the final query results
are precisely obtained.

In this study, we focus on the ICOD task within the
remote sensing scene. In response to this need, we have
released a dataset containing buildings from six cities in China.
The buildings in this dataset show significant differences in
characteristics, making them highly suitable for the ICOD
task. To address the limitation of the dataset covering only
a single category, we further use the DOTA dataset [9] for
supplementation. The reorganized data includes 12 different
categories, aiming to expand the applicability of the target
query task, which is crucial for validating the effectiveness of
the proposed methods. The main contributions of this study
are summarized as follows.

1) We introduce an ICOD task to build a novel IS scheme
for RSI, effectively facilitating the rapid extraction of
identical-class land objects within images.

2) A new ICODet is proposed, leveraging image similari-
ties by using a comprehensive analysis of both semantic
and spatial features across support target features and
queried image features.

3) We have released the EVLab Building dataset, which
includes buildings from six Chinese regions, as well as
a reorganized dataset comprising multiple categories of
RS targets.

4) Our proposed network has outperformed comparable
methods on both datasets, demonstrating its efficiency
and applicability.

The remainder of this article is organized as follows.
Section II offers a brief review of related work. Section III
details the proposed ICODet network, including the feature
similarity analysis module among others. Experiments and
analyses are discussed in Section IV. Finally, Section V
concludes the study.

II. RELATED WORK

In this section, we concisely review literature pertinent to
our study, focusing on IS and image feature similarity metrics.

A. Interactive Segmentation

Before the advent of deep learning, IS methods [27], [28],
[29], [30] mainly depended on low-level image features and
optimization-based graphical models, which often led to poor
performance and efficiency. The breakthrough success of deep
learning in semantic segmentation inspired a new generation of
IS techniques. These methods transform user interactions into
click maps for model input, significantly improving accuracy
and efficiency. The first deep learning-based IS method [31]
revolutionized the approach by using distance maps derived
from clicks in combination with images. Several methods, such
as DEXTR [32], FCA-Net [33], and f-BRS [34], have targeted
various IS efficiency improvements, focusing on elements like
extreme point identification and optimization during inference.
Recent works include RITM [14] and PGR-Net [35], which

integrates previous segmentation results and distance maps
into inputs, and PseudoClick, which employs an additional
module to simulate annotator clicks. The recent methods [12],
[13] focus on refining segmentation locally using lightweight
modules and approaches like Interformer [15] and SAM [16]
preprocess images with larger models, improving IS perfor-
mance through efficient, lightweight modules. Additionally,
the latest IS methods [36], [37], [38] have adopted new strate-
gies and universal prompt encoders to enhance segmentation
performance. For example, GPCIS [37] leverages click points
information to frame the IS task as a pixel-level binary classi-
fication model based on Gaussian processes (GPs), thereby
improving the quality of IS targets. SEEM [36] encodes
diverse prompting for all types of segmentation tasks, enabling
IS of everything everywhere at once. DINOv [38] introduces a
general visual prompting framework for open-set segmentation
and detection tasks, enhancing the segmentation capabilities
for visual targets. Despite these advancements, a common
limitation remains: the inability to segment multiple objects
of the same class simultaneously, highlighting a potential area
of our proposed task.

B. Image Feature Similarity Metrics

The evaluation of image feature similarity plays a cru-
cial role in various applications [39], [40], [41], employing
metrics such as Euclidean, Mahalanobis, cosine similarity,
and Matusita distances. These methods are pivotal in deep
metric learning [42], meta-learning [43], and few-shot learn-
ing [44]. For instance, Dong and Xing [45] used prototypical
networks and feature similarity metrics for few-shot segmen-
tation. Category-agnostic object counting [21], [22], [46],
[47] has, moreover, used analysis of feature similarity at
different levels to query the number of targets. Image-based
image retrieval [17], [48], [49], [50] primarily relies on the
measurement of image feature similarity. FSOD [20], [51],
[52], [53] based on meta-learning has shown the effectiveness
of comparing feature similarity between support objects and
query images, enabling detection with minimal annotated
data. Recent FSOD works [54], [55], [56] improve detection
performance by focusing on hard samples or class-agnostic
metrics. For example, Yan et al. [54] introduced confus-
ing proposals separation (CPS) and affinity-driven gradient
relaxation (ADGR) to address missing annotations treated
as background. Liu et al. [55] designed a novel FSOD
approach for remote-sensing images that addresses labeling
inconsistencies and improves proposal quality. Additionally,
to mitigate bias toward novel classes from base class training,
Han et al. [56] propose a class-agnostic aggregation method,
which aggregates query and support features regardless of their
categories. FM-FSOD [57] is based on the DETR framework
and integrates large language models to achieve FSOD.

III. PROPOSED ICODET NETWORK

This section first clearly defines our proposed ICOD task
and subsequently provides an in-depth description of the
proposed ICODet for RSI IS. Fig. 3 illustrates the framework
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Fig. 3. Framework of the proposed ICODet for remote sensing image IS. FSCM.

of ICODet, comprising three principal components: the back-
bone, feature similarity analysis module, and identical-class
object detector.

A. Task Definition

In ICOD, all targets of the identical category as the guided
target are detected simultaneously. Specifically, for an image
of a specific region containing N (where N ≥ 3) targets of a
certain class, the proposed task uses the mask of K (e.g., K =

1, 2, 3, default 1) targets to simultaneously query and locate
the remaining N − K class targets in the image, and uses
a bounding box to represent the queried targets. Significantly,
this task is limited to detecting objects of the same class as the
support target and does not involve detecting objects of other
classes. Both the support target and the objects to be detected
are, moreover, located within the same image. The ICOD aims
to efficiently detect identical-class targets in a specific region
for fast IS of RSI.

B. Backbone

In the proposed ICODet, we employ a lightweight back-
bone, such as ResNet18 without its classification layer,
to extract image features from both query and support target
images. To get the support target image, we clip it from the

input image using a mask’s extended box, applying thresholds
(e.g., 10, 15, or 20 pixels) to ensure a broader coverage
of the target area. This clipped image is then resized to
224 × 224 pixels for compatibility with the backbone’s input.
The same backbone processes both the query and target
images, producing feature maps at 1/16 of the original input
size. Additionally, the target image mask is resized to match
the size of the target features, serving as input for the feature
similarity analysis module.

C. Feature Similarity Analysis Module

The S3QFM consists of two key components: the semantic
similarity search module (Se3M) and the spatial similarity
search module (Sp3M), as illustrated in Fig. 3. S3QFM
leverages deep image features, along with the support object’s
features and mask, to learn the similarity between the
image and the support objects from both semantic and spa-
tial perspectives. This is the critical module for identifying
identical-class objects.

First, Se3M operates by generating prototype features from
the support mask and features, then matching them against the
query image features to produce semantic-based search results.
Concurrently, Sp3M uses both the mask and the features of
the support and query images to perform matching and fusion
across both global and local dimensions within the spatial
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feature space. Finally, the process of S3QFM for the query
image features (Fq), the support target features (Fs), and the
mask (M) can be formulated as follows:

FFM = Cat
(
Se3M

(
Fq, Fs, M

)
, Sp3M

(
Fq, Fs, M

))
(1)

CBR(x) = Conv3 × 3(BN(ReLU(x))) (2)

S3QFM
(
Fq, Fs, M

)
= CBR(CBR(FFM)) (3)

where the abbreviations of “ReLU,” “BN,” and “Conv 3 × 3”
correspond to the rectified linear unit, batch normalization, and
a convolutional layer with a 3 × 3 kernel size, respectively.
FFM represents the concatenation of query image features and
support target features, along with their corresponding masks,
after processing through Se3M and Sp3M. “Cat” denotes the
concatenation operation. CBR(∗) refers to the sequence of
operations comprising ReLU, BN, and a 3 × 3 convolution
applied to the input variables.

For the Se3M, the given mask is first manipulated to
extract foreground and background maps. These maps are then
integrated with the support features via the masked average
pooling (MAP) operation to generate the support feature
prototypes. It can be computed by the following equation:

rs = MAP(Fs, M) (4)

where Fs represents the support target features, while M
denotes the mask associated with the support target. The
term rs refers to the prototype features for the support target,
encompassing both the foreground and background areas in
the supporting image.

These prototypes are used for the generation of the matching
results with the query features by using the cosine similarity
metric, the ouput can be denoted as follows:

Similarityfg = Cosine
(
Fq, rfg

)
(5)

Similaritybg = Cosine
(
Fq, rbg

)
(6)

M
(
Fq, rs

)
= Cat

(
Simlarityfg, Simlaritybg

)
(7)

where rfg represents the prototype features of the foreground in
the support image, while rbg denotes the background prototype
features for the support image. Fq refers to the query image
features. Similarityfg represents the similarity map between the
foreground prototype features and the query image features,
while Similaritybg denotes the similarity map between the
background prototype features and the query image features.
M(Fq, rs) indicates the similarity between the support image
features and the query image features.

Finally, the matched results are concatenated with the query
image feature for the input of a CBR(∗) function to produce
the results of Se3M. This process generates similarity features
based on learned semantic context.

The Sp3M achieves matching outcomes within the spatial
feature dimension by performing feature fusion and matching
at both global and local levels. Initially, it integrates support
object features with its corresponding mask according to (2),
denoted as Fsm. The Fsm represents the support object features,
which integrate learnable features from the target mask. Next,
Fsm and the query image features undergo average pooling

to obtain the target prototype features and the global features
of the query image, respectively. These two feature vectors
are concatenated and then passed through two fully connected
layers (FCLs) to learn the common global weights (CGWs).
The CGW is fused features based on the support feature
vectors and the global features of the query image, designed to
learn a correlated global representation of both feature types.
The FCL can be expressed as follows:

FC(x) = Wx + b (8)
FCL(x) = Sigmoid(BN(FC(ReLU(BN(FC(x)))))) (9)

where the “W” represents the parameters of the FCL, and “b”
denotes the bias term.

After processing through the FCL(x), the global weight
feature channels remain consistent with the input size, with
dimensions of 1 × 1. These global weights are then applied
to both the query and support image features through multipli-
cation and addition, respectively, to produce features enhanced
by global information.

In order to promote bidirectional interaction and matching
between the support object features and query image features
at a local scale, enhanced features are obtained through two
merging operations. Note that after integrating the global
weight information, both features are resized back to the
original feature map size, which is 1/16 of the input image
size. First, for the initial fusion of the query image features,
the support image features are resized to match the query
image features’ dimensions and concatenated with them. This
concatenated result is then fused using two CBR(∗) fuctions.
Similarly, for the support object features, the query image
features are resized to match the dimensions of the support
object features and concatenated, followed by fusion using
two CBR(∗) fuctions to obtain the enhanced support object
features. Second, for the second fusion of the support object
features and query image features, a CBR(∗) fuction is used
to integrate the input features, the globally enhanced features,
and the initially fused features of both types. This process
yields the spatial-level matching results for the support object
and query image. The support and query features enhanced by
Sp3M maintain the same dimensionality as the input features.

D. Identical-Class Object Detector

Building on the architecture of Faster R-CNN for object
detection, our proposed ICODet identifies positions of iden-
tical class objects. The model generates proposals by using
fused features obtained from the S3QFM. In addition,
a straightforward FSCM is implemented to compare the region
of interest (RoI) features of each proposal with the enhanced
support features, facilitating the extraction of finely compared
features. This process culminates with the application of a
detection head for bounding box (bbox) refinement.

Within the FSCM, we employ a straightforward yet effective
method for feature comparison by calculating the difference
between the support object features and each preliminary
query object feature, followed by their fusion. Initially, the
FSCM computes the difference between the support object fea-
tures and the preliminary query object features by performing a
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matrix subtraction to obtain the differential features of the two
targets. Since these differential features enhance the distinct
characteristics of different categories, it is essential to retain
the original support object features and query image features as
well. These differential features are then concatenated with the
original support and query features. This combined features is
subsequently fused using two convolutional layers, each with
a kernel size of 3 × 3, to effectively integrate the three types
of features. The overall process can be represented as follows:

FSCM = CBR
(
CBR

(
Cat

(
Fso, Fqo, Fso − Fqo

)))
(10)

where Fso, Fqo correspond to the support object features and
preliminary query object features.

Finally, the fused features obtained from the FSCM are fed
into a classifier and a bounding box regressor. The classifier is
used to determine whether the detected box contains an object
of the same category as the support target, while the regressor
is used to predict the positional parameters of these objects.

E. Loss Fuction

We optimized the loss function used in our proposed method
by referencing the design of Faster R-CNN. Given that the
task of ICOD is to detect targets of the same category as
the support target, the adopted loss function does not include
the classification of object categories. The overall loss function
is composed of several distinct components, each designed to
address specific aspects of the detection process.

The RPN Loss (L rpn) is applied to the outputs from the
RPN. This part of the loss function is critical for generating
effective region proposals. It can be defined as follows:

L rpn = λ1

∑
i

Lcls
(

pi , p∗

i

)
+ λ2

∑
i

p∗

i Lmse
(
bi , b∗

i

)
(11)

where pi is the probability of anchor i being an object, p∗
i

is the ground truth, bi is the predicted box, b∗
i is the ground

truth box, Lcls is a classification loss applied to predict whether
an anchor is an object or background, and Lmse is the mean
squared error (mse) used to adjust the anchor positions to
better fit the detected objects.

This objectness loss (Lobj) assesses the likelihood of each
proposal containing an object after the feature comparison,
which is crucial for determining the presence of targets. It is
given by the following equation:

Lobj =

∑
i

Lbin
(
oi , o∗

i

)
(12)

where Lbin is the binary cross-entropy loss, oi is the predicted
objectness score for each proposal, and o∗

i is the binary truth
(1 if an object is present, 0 otherwise).

The mse loss further refines the bounding boxes predicted
by the network. It can be denoted as follows:

L loc =

∑
i∈pos

Lmse
(
ti , t∗

i

)
(13)

where only positive proposals (i.e., those containing an object)
are considered. The final loss functions are as follows:

Ldet = L rpn + Lobj + L loc. (14)

TABLE II
DETAILS OF EVLAB BUILDING DATASET. “N.TR” MEANS THE NUMBER

OF TRAINING SETS AND “N.TE” MEANS THE NUMBER OF TEST SETS.
“TO.” MEANS THE TOTAL NUMBER

IV. EXPERIMENTS AND ANALYSIS

A. Dataset Description

EVLab building dataset is carefully collected and manually
annotated. It features a diverse range of buildings across six
cities in China: Taiwan, Guangdong, Chongqing, Zhengzhou,
Wuhan, and Xi’an, as illustrated in Fig. 4. Derived from
Google Earth images and aerial images in 2019, this dataset
is mainly used for the ICOD task in this article. The acquired
images and their corresponding vector labels were cropped
into 512 × 512 pixel resolution, using a 50% overlap between
each cropped sample to maintain data coherence. The cropped
vector labels were converted into polygon formats within the
image coordinate system and saved as JSON files. To meet the
ICOD task, we adopted the following criteria to preprocess
the constructed dataset: first, we removed the buildings with
less than 50 pixels in a sample; Second, if the number of
buildings in a sample is less than three, the sample is excluded.
After these steps, the dataset finally consists of 11 670 training
samples and 3453 test samples, as shown in Table II.

In addition, we introduce two metrics for each sample to
describe building distribution density across regions: the count
of buildings (CoBs) and the ratio of the building area (RBA).
CoB refers to the CoBs for each image, while RBA denotes
the ratio of the total area of all buildings to the total pixel
number of pixels per image. Fig. 5 reveals a concentration of
buildings primarily on the left, indicating most samples have
fewer than 30 buildings, suggesting low density. The top left
part has numerous points, denoting many large-area building
samples. Fewer points in the bottom left suggest sparsity.
In particular, Guangdong samples frequently appear in the
upper right, signaling higher-density building samples in this
region

RBA =

N∑
i=1

Ai

/
Aimage (15)

where N is the number of buildings detected in the image,
Ai is the area of the i th building and Aimage the area of the
image.

DOTA dataset [9] is further used for our work due to
its inclusion of various types of ground objects. The dataset
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Fig. 4. Typical building samples of EVLab building dataset.

Fig. 5. Building density distribution of six regions in EVLab building dataset. From left to right: training and test sets.

is a large-scale, high-resolution remote sensing image object
detection dataset. It comprises 18 different categories, totaling
11 268 images and 1 793 658 annotated instances. The resolu-
tion of the images ranges from 800 × 800 to 20 000 × 20 000
pixels, covering targets of various sizes, orientations, and
shapes. In the DOTA dataset, each target instance is marked
with an arbitrary quadrilateral. To fit our task, we performed
a series of reprocessing steps: 1) images are cropped to
512 × 512 pixels; 2) each sample contains at least one type of
ground object and the number of such types is more than 3;
and 3) the number of training samples per category exceeds
50. In addition, target instances are annotated using an external
rectangular box, while retaining its original quadrilateral anno-
tation. After these processes, the data statistics are presented
as shown in Table III.

B. Experimental Settings

1) Evaluation Criteria: In our proposed ICOD task, bound-
ing boxes are used to represent the results of querying targets
of the same category in an image. To evaluate detection
accuracy, we use the average precision (AP) metric, a stan-
dard measure in object detection. AP quantifies the trade-off
between precision and recall and is calculated as the area
under the precision-recall curve. This calculation relies on
the intersection over union (IoU) metric, which assesses the

TABLE III
DETAILS ABOUT THE PROCESSED DOTA DATASET. “N.TR” MEANS THE

NUMBER OF TRAINING SETS AND “N.TE” MEANS THE NUMBER OF
TEST SETS. “TO.” MEANS THE TOTAL NUMBER

overlap between predicted and ground truth bounding boxes.
The IoU is defined as follows:

IoU =
Bp ∩ Bgt

Bp ∪ Bgt
(16)
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where Bp is the predicted bounding box and Bgt is the ground
truth bounding box.

We calculate the AP using the IoU metric. It represents the
average over multiple threshold conditions, with IoU ranging
from 0.50 to 0.95, in steps of 0.05. The AP is expressed as
follows:

AP =
AP50 + AP55 + · · · + AP95

10
. (17)

For the IS task, we set the IoU at 0.5 to deem a target
detection correct for all experiments. We set the target score
threshold to 0.65 because remote sensing targets are easily
distinguishable from the background. Based on these settings,
we use precision, recall, and F1 score for evaluation. For
each target detected in an image, true positive (TP) represents
the correctly predicted targets, false positive (FP) represents
the incorrectly predicted targets, and false negative (FN)
represents the targets that were not detected; therefore, the
formulas for precision, recall, and F1 score are in the following
equations. At last, we calculate the detection accuracy for each
image and average all the results to serve as the metric for
evaluating all methods

Precision =
TP

TP + FP
(18)

Recall =
TP

TP + FN
(19)

F1-score =
2 × Precision × Recall

Precision + Recall
. (20)

2) Parameter Setup: In our proposed method, we use the
lightweight ResNet18 as the backbone, from which its classi-
fier is removed, and its layer 4 is employed as the subsequent
part of FSCM in the identical-class object detector. For an
anchor-based way, the RPN is derived from Faster R-CNN. All
experiments are conducted on an NVIDIA 3090 GPU under
Ubuntu 20.04.

The experiments use the Adam optimizer [58] with an initial
learning rate of 1e-4. The batch size is set to 8, and the total
number of epochs to 64. In the loss function, the parameters
λ1 and λ2 from (11) are both set to 1 by default. Additionally,
we implement a cosine annealing scheduler with a linear
warm-up strategy to optimize the decay of the learning rate,
ensuring smooth convergence during training. The proposed
method and comparative experiments are all implemented
under the PyTorch framework.

The proposed method, along with comparative experiments,
is implemented using the PyTorch framework. During the
training process, our approach takes a query image and a
support object, along with its mask on the image, as inputs.
This involves feature extraction and two rounds of feature
comparison between the query image features and the support
object features. The process ultimately outputs the location of
objects that belong to the same category as the support target.

During the inference stage, our method serves as a subtask
of the IS task by providing detected locations of identical-class
objects as bounding box prompts. These prompts are used as
inputs for the IS model to segment the same-category targets
within the detected bounding box regions, thereby facilitating

rapid IS. This capability significantly enhances the efficiency
and accuracy of the IS processes.

C. Detection Performance Comparison

This section presents the detection performance compar-
isons on two datasets for different methods on the ICOD task.

1) Comparable Methods: We compared our proposed
method with five recent FSOD methods [20], [52], [53],
[59], [60] for the ICOD task. These FSOD methods can
independently represent the support object by cropping the
target region from the image for input into the backbone
to obtain features. They can also be adjusted to operate
without training on base classes, making them applicable to
our proposed ICOD task.

FS_detection [20] introduces a reweighting module that
maps support samples of a certain class to reweighting vectors,
modulating the query image features to detect objects of the
same class. DCNet [52] constructs a dense relation distillation
(DRD) module that performs dense feature matching using
support object features of certain classes to activate co-existing
features in the input query. DAnA [53] transforms support
images into query-position-aware features, guiding detection
networks precisely by assigning customized support infor-
mation to each local region of the query. FCT [59] builds
a model based on a fully cross-transformer, incorporating
cross-transformer into both the backbone and detection head
to aggregate key information from both query and support
images. DiGeo [60] employs a new training framework to learn
geometry-aware features that enhance interclass separation and
intraclass compactness for the FSOD task, addressing the issue
of insufficient discriminative feature learning for all classes.
These methods use support images of comparable size to
query images and detect multiple categories simultaneously
but cannot rely solely on the current category of the supporting
image. Obviously, these methods differ somewhat from our
task.

The latest FSOD methods, such as FM-FSOD [57] and
SDDGR [61], are, however, not suitable for our work. FM-
FSOD is based on the DETR framework and integrates large
language models to achieve FSOD. SDDGR uses diffusion
models to generate new samples based on a small amount of
labeled data, including bounding boxes and category infor-
mation, to train a robust object detector. These methods
incorporate large language models and diffusion models,
which are not currently applicable to our task, as they do not
include text prompts and require consideration of real-time
efficiency in interactions.

To adapt the recent five FSOD methods to our task, we made
two adjustments: 1) support images are cropped from the target
regions of the query image area and resized to 224 × 224, and
2) the network is configured to detect only objects of the same
category as the support object.

2) On the EVLab Building Dataset: Our proposed method
achieves the best results, with an AP of 40.97% and an
F1 score of 66.37%, as shown in Table IV. Additionally,
our method has a lower parameter count and a competi-
tive inference speed of 40.66 FPS. Additionally, our method
exhibits lower parameters and a competitive inference speed of

Authorized licensed use limited to: Wuhan University. Downloaded on February 17,2025 at 02:55:04 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: FASTER INTERACTIVE SEGMENTATION OF IDENTICAL-CLASS OBJECTS 4500516

TABLE IV
COMPARISON OF DIFFERENT METHODS FOR THE TWO DATASETS. NOTE: “M” DENOTES MILLION, AND “FPS” STANDS FOR FRAMES PER SECOND

40.66 FPS. In contrast, FS_detection, which uses a one-stage
object detection approach, demonstrates the fastest inference
speed but suffers from the lowest accuracy overall. Although
FS_Detection achieves the highest precision of 76.8%, it has
the lowest recall due to numerous missed detections among
densely packed and small buildings, resulting in poor per-
formance in both the AP and F1 score. FCT adopts a full
transformer design, integrating support target and query image
features from the feature extraction stage, potentially facing
limitations due to simplified support targets. DiGeo, which
considers interclass separation and intraclass compactness,
performs poorly on single-class building datasets. We sequen-
tially visualize the results of all methods across six regions,
as depicted in Fig. 6. From the visualization, our method
demonstrates the highest stability across various scenarios,
followed by DCNet, which aligns with the F1 score and
AP metrics. In the prediction results for Taiwan, Chongqing,
and Xi’an regions, our method accurately predicts multiple
buildings, while the ground truth represents these as a single
large building, with several red boxes enclosed within a larger
red box. This discrepancy primarily arises from inconsistencies
and a lack of precision in the manual annotations of our
ground truth samples. In spite of these issues, our proposed
method accurately separates these buildings, achieving the best
performance.

3) On the DOTA Dataset: We conduct further validation of
various methods on the multiclass DOTA dataset. As shown in
Table IV, our proposed method achieves the best performance,
with an AP of 19.21% and an F1 score of 45.88%, followed
by DiGeo. DiGeo performs well on the multiclass DOTA
dataset due to its focus on interclass separation and intraclass
compactness. FS_Detection shows the lowest performance in
terms of F1 score, while DCNet performs poorly in terms of
AP, indicating that FS_Detection requires fine-tuning and is
heavily dependent on parameter adjustments. The query results
for different methods are visualized in Fig. 7, demonstrating
that our method outperforms the others.

Our method excels particularly with large objects, such as
tennis courts, planes, harbors, basketball courts, and baseball
diamonds, with DAnA as the next best performer. DiGeo
and FCT, however, perform the worst on baseball diamond
detection, likely due to the scarcity and imbalance of sam-
ples in this category. For smaller, densely packed targets
like ships, DAnA and FCT miss many detections, while
our method has a few FPs due to a fixed NMS threshold.
Notably, in detecting planes, ships, large vehicles, and baseball
diamonds, FS_Detection, DCNet, and DiGeo detect objects
of other categories, whereas our method consistently detects
only targets of the same category as the support object. FCT
struggles with detecting small, gray storage tanks due to the
support object being larger and whiter, whereas our method
performs well by considering semantic and spatial similarity.
The key to our approach lies in querying only targets of the
same category as the support targets. Overall, our approach
demonstrates superior performance on the multiclass ICOD
task.

D. Ablation Study

We conduct a series of experiments on the EVLab Building
Dataset and the DOTA dataset to validate the importance
of each component of the proposed method. Additionally,
we examine the influence of different backbones on the
performance of the proposed method. The impact of using the
mask of the support object is, furthermore, validated within
the designed S3QFM. Finally, we investigate various factors
influencing the performance of the proposed method, such as
the number of expanded pixels for the bounding box of the
support object and the number of support objects.

1) Impact of Each Component of Our Method: As shown
in Table V, we conduct experiments on different components
of our method on two datasets. As a baseline, we use two
convolutional layers for feature fusion to replace S3QFM.
In this setup, the features of the support objects are resized to
match the dimensions of the query image features, and the two
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Fig. 6. Visualization of different methods on the EVLab building dataset. Note: in the prediction results, yellow boxes indicate TPs, red boxes indicate FPs,
and blue boxes indicate FNs.

features are concatenated. On the EVLab building dataset, the
baseline achieves an AP of 37.88% and an F1 score of 63.56%.
After incorporating Se3M, the AP increases by about 1%, and
the F1 score increases by 1.29%. The baseline using Sp3M
shows more significant improvements, with AP and F1 scores
increasing by 2.0% and 1.77%, respectively. The performance
is further improved when Se3M and Sp3M are used together,
called S3QFM. After adding FCSM, the method achieves the
best results.

Given that the EVLab building dataset contains only a single
category of buildings, we continue to validate the components
of our proposed method on the DOTA dataset. Quantita-
tive results indicate that the performance of the method is
gradually improved. Notably, baseline using Sp3M did not
demonstrate a significant advantage over baseline using Se3M
on multiclass DOTA dataset. This is partly because semantic
features significantly influence the process of searching for
features similar between target features and queried image
features. The organized DOTA dataset includes 12 categories,
which, furthermore, increases the complexity of the task.
In the multiclass DOTA dataset, our introduced FCSM shows
an improvement of 0.78% in AP and 1.35% in F1 score,

demonstrating a substantial improvement compared to the
single-building task.

2) Impact of Using Different Backbones: We evaluate the
performance of the proposed ICODet method using differ-
ent backbones on two datasets, as shown in Table VI. The
backbones used include ResNet50 [26], ResNet101 [26],
VGG16 [62], the recent ConvNeXt V2 [63], and Dinov2 [64].
ResNet50 and ResNet101 are chosen to examine the impact
of increasing parameters on model performance. VGG16
represents a different CNN architecture, while ConvNeXt
V2 is a recent and powerful model. Additionally, Dinov2,
based on the transformer architecture, is noted for its strong
generalization capabilities. Experiments were conducted on the
EVLab building dataset and the DOTA dataset.

As observed in Table VI, the detection performance for
identical-class objects progressively improves with ResNet50
and ResNet101 backbones, with ResNet101 achieving better
results and an inference speed of 10.24 images per second
(for images sized 512 × 512). ICODet’s performance peaks
when using ConvNeXt V2 as the backbone due to its robust
architectural design; however, the complexity of ConvNeXt
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Fig. 7. Visualization of different methods on the DOTA dataset. Note: in the prediction results, yellow boxes indicate TPs, red boxes indicate FPs, and blue
boxes indicate FNs.

V2 results in a lower inference speed of 9.49 images per
second. Although VGG16 has a comparable parameter count
to ConvNeXt V2, its detection performance is lower. The
performance with Dinov2 is the poorest, likely because our
designed S3QFM is primarily CNN-based and does not incor-
porate transformer structures, making it challenging to adapt
to the transformer-based Dinov2.

While increasing model parameters can enhance the per-
formance of the ICOD task, it is essential to consider
the need for real-time interaction in practical applications.
We have, therefore, chosen ResNet18 as the backbone for
the current version. In future work, we plan to use models
with higher parameters to further improve detection capa-
bilities.
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TABLE V
ABLATION OF OUR PROPOSED METHOD ON THE TWO DATASETS. “M” STANDS FOR MILLION AND “G” REPRESENTS BILLION

TABLE VI
PERFORMANCE OF ICODET USING DIFFERENT BACKBONES ON THE TWO DATASETS

Fig. 8. Influence of the number of expanded pixels of the external rectangular
box.

3) Impact of Using the Mask of the Support Target:
In our proposed ICODet, we use the mask of the support
object in the S3QFM to leverage the background and semantic

Fig. 9. Impact of the number of the support objects on the EVLab building
dataset.

information surrounding the support object. As shown in
Table VII, we evaluate the impact of masks within the S3QFM.
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Fig. 10. Application of fast IS using our proposed ICODet and an IS model. The yellow checkmark (
√

) denotes the point prompts used by the IS model
to generate the mask of the support object. The yellow dashed box illustrates the detection results of ICODet, while the masks in various colors indicate the
segmentation results obtained through the IS model. (a) Building extraction in high-resolution RSI. (b) Some typical remote sensing object segmentation.

When neither Se3M NOR Sp3M uses masks, the performance
degradation of our proposed method is greatest. After imple-
menting masks separately in Se3M and Sp3M, there are some
improvements. Particularly, the best results are achieved when
both used masks simultaneously.

4) Impact of the Extended Pixels of the Box: Our proposed
task is designed based on the image of a specific region,
where the supporting object comes from the current image;
therefore, we need to crop these objects as support samples.
In this process, the extent to which the bounding box of
the support targets is expanded outward is a crucial factor;
therefore, we conduct experiments to expand the bounding box
of the target by N pixels on each side (top, bottom, left, right),
N ∈ {5, 10, 15, 20, 30}, as shown in Fig. 8. The experimental
results show that when the expansion size is set to 10 or
15 pixels. The performance reaches the peak. Continuing to
increase the number of extended pixels beyond this point will
cause performance degradation. This drop is most likely due
to the inclusion of parts of other buildings as a background in
the expanded scope, resulting in confusion for the proposed
method. In this article, we set the box expansion to 10 pixels
for all comparative experiments.

5) Impact of the Number of Support Objects: For our
proposed ICOD task, the selection and number of support
targets influence the model’s ability to identify more of the
same type of targets. To this end, we validate the impact of
randomly choosing 1–3 support targets on the performance of
the proposed method. As shown in Fig. 9, the performance
improves with an increase in the number of support targets.
When the number of support targets reaches or exceeds two,
the features from multiple support targets are averaged in
the S3QFM, and these averaged features are then used for
similarity calculations. This approach allows the averaged
features to better capture the overall characteristics of the
buildings in the current query image. This finding confirms
the effectiveness of our approach for the ICOD task. In our
experimental setup, we have set the number of support objects
to one to streamline the process while maintaining robustness.

E. Application

We develop a fast IS application using our proposed ICODet
and an IS model for remote sensing images as illustrated in
Fig. 1. This application initially performs IS on a support
target by using point prompts or boxes to obtain the sup-
port target’s mask. It then uses our ICODet to heuristically
identify identical-class objects within the image. Finally, the
application employs the IS model and the detected bounding
boxes to segment the identical-class objects. As demonstrated
in Fig. 10, the application effectively recognizes and segments
all buildings after interactively segmenting one building. Most
buildings are segmented with high quality, though a few
present challenges due to vegetation or other structures on
their rooftops. Additionally, the application performs well in
quickly segmenting storage tanks, swimming pools, planes,
and small vehicles in high-resolution images. While ships in
dense scenes result in a few missed detections due to their
small size and low image resolution, the IS results for most
categories still meet the requirements. The IS model used is
derived from SAM [16]. In future work, we plan to fine-tune
this model to better adapt it to our remote sensing targets, such
as complex buildings and smaller-sized objects.

V. DISCUSSION

The proposed ICODet incorporates a S3QFM that learns
similarity features between support object features and query
image features from both semantic and spatial perspectives.
This approach has proven effective for both single-category
and multicategory datasets; however, it still falls short of
the demands for rapid IS. Our method struggles with small
targets, such as ships, and with poor distinguishability between
categories, such as helicopters and airplanes or large and small
vehicles, leading to lower accuracy on the DOTA dataset.
In future work, we plan to incorporate intraclass variability
into the transformer-based DETR structure to enhance its
ability to detect small targets and improve the distinguisha-
bility between subcategories. Additionally, the S3QFM is
primarily designed based on CNN; we will redesign it as
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TABLE VII
EFFECTS OF USING MASK AT DIFFERENT POSITIONS OF OUR METHOD ON EVLAB BUILDING DATASET

a transformer-based module to better leverage the powerful
feature representation capabilities of transformers.

Our proposed ICODet, furthermore, effectively detects
identical-class objects in fast IS applications; however, it strug-
gles with complex architectural rooftops when using the SAM.
We intend to fine-tune SAM to enhance its performance for
our fast IS tasks in the near future.

VI. CONCLUSION

In this research, a new ICOD task and an identical-class
object detection network denoted as ICODet, are proposed
for faster IS for high-resolution remote sensing images. The
ICOD task is designed to identify only those objects that
belong to the same class as the support target while excluding
objects from other categories. Our proposed method adopts a
two-stage object detection design, using a lightweight feature
extractor to capture features from both the query image and the
supporting target category. By constructing a feature similarity
analysis module that incorporates semantic similarity and spa-
tial search, we analyze the similarity between support object
features and query image features at both the feature-space and
semantic levels. A simple yet effective comparison of the pre-
liminary detection results with the query targets, furthermore,
enhances detection performance in multiclass tasks. The video
demonstrating the effects of faster IS, along with the publicly
available EVLab Building dataset and the reorganized DOTA
dataset, can be found at https://github.com/zhilyzhang/ICODet.
This work greatly improves the efficiency of sample anno-
tations, offering significant practical value for data produc-
tion and fundamental applications in the remote sensing
community.
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