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Images
Bingnan Yang†, Mi Zhang∗, Yuanxin Zhao†, Zhili Zhang,

Xiangyun Hu, and Jianya Gong

Abstract—Building vector maps play an essential role in
many remote sensing applications, thereby boosting the deep
learning based automatic building vector extraction methods.
These approaches have achieved pleasant overall accuracy, but
their predict-style framework struggles with perceiving subtle
details within a tiny area, such as corners and adjacent walls.
In this study, we introduce a denoising diffusion framework
called DiffVector to generate representations for direct building
vector extraction from the remote sensing (RS) images. Firstly,
we develop a hierarchical diffusion transformer (HiDiT) to
conditionally generate robust representations for detecting nodes
and extracting corresponding features. The conditions of HiDiT
are multi-level boundary attentive maps encoded from input RS
images through a topology-concentrated Swin Transformer (TC-
Swin). Subsequently, an edge biased graph diffusion transformer
(EGDiT) takes extracted node features as conditions to produce
new visual descriptors for the adjacency matrix prediction. In
EGDiT, we replace the standard self-attention operation with
an edge biased attention (EBA) to inject edge information for
training stabilization. Furthermore, given typical challenges of
training difficulty and weak perceptive ability in convectional
diffusion paradigms, we conduct an isomorphic training strategy
(ITS), ensuring that the training procedures of both HiDiT
and EGDiT precisely mirror the inference phase. Quantitative
and qualitative experiments have evidently demonstrated that
DiffVector can achieve competitive performance compared to ex-
isting modern approaches, especially in metrics assessing topology
quality.

Index Terms—Vector extraction, Building extraction, Diffusion
model, Deep learning.

I. INTRODUCTION

BUILDING vector maps are structured as directional
graphs recording footprints, connectivity and associ-

ated attributes, which supports distinct advantages of lossless
scalability, convenient topological analysis, free attribute edi-
tion, and low storage cost. These characteristics establish the
pivotal role of building polygon data in many remote sensing
(RS) and geographic information systems (GIS) applications,
such as population density estimation, disaster management
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and urban planning [1]–[3]. The brisk demand booms re-
searches on automatic polygonal buildings extraction from
remote sensing images in order to replace time-consuming
and labor-intensive manual and semi-automatic production.
Especially in recent years, deep learning (DL) methods offers
promising solutions to automatic polygonal building map
extraction and they can be grouped into three paradigms,
namely segmentation-based, counter-based and node-based.

Segmentation-based approaches follow the two-step
‘segmentation-vectorization’ pipeline that firstly obtain
segmentation results and then vecterize them to building
vector polygons (i.e. building contours). Owing to the
powerful DL-based segmentation models, segmentation-based
building extraction can achieve stable raster maps. However,
the inaccuracy at edges, such as omission and jaggies,
is unavoidable due to the grid-based data form [4], [5].
Consequently, in order to achieve pleasant building polygons,
this kind of methods are heavily reliant on optimization
modules which are usually computationally intensive,
expert-dependent and highly specialized. Unlike the former
categories, contour-based methods directly extract building
vector polygons from RS images without post-processing
procedures via refining initialized building contours [6]–[8].
These approaches show promise in low-complex buildings
while encounter failure in hollows, concave or complicated
contours which limit their versatility. In contrast, the emerging
node-based scheme is theoretically closest to the essence of
vector data format. Approaches falling in this scope, such
as PolyWorld [9] and TopDiG [10], directly extract building
graphs from RS images without pre- or post-processing. As
illustrated in Fig. 1, their typical pipeline is to decompose
the vector extraction task into two sub-tasks, namely node
extraction and adjacency matrix generation. The common
practice of the former one is a dense prediction task aiming
to generate heatmaps recording node probability, while the
latter one is a sparse prediction task that leverages feature of
detected nodes to predict adjacency matrix.

Although the node-based paradigm theoretically possesses
the capability to handle building outlines of arbitrary complex-
ity, in practical applications, existing methodologies frequently
encounter difficulties in accurately capturing finer details. For
example, they may overlook corner detection or fail to differ-
entiate between closely situated buildings. This is exemplified
in Fig. 2, where the imprecise focus on concave corners and
adjacent building walls has led to conspicuous inaccuracies
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Figure 1. The schematic diagram of the typical pipeline of
node-based vector extraction approaches.

in the extraction results within those regions. Although these
issues may not substantially affect the overall accuracy, they
significantly hinder the practical applicability of the extraction
outcomes. A potential root cause lies in the fact that current
node-based building vector extraction techniques can only
provide a coarse representation of these challenging areas
within very limited windows, resulting in blurred features and
inaccurate vector outputs.

(a) Attentive Maps (b) Vector Reuslts Visualization

Figure 2. The attentive map, building vector results, and
detailed views of two typical problems in TopDiG extraction.
The red and green colors indicate the missing corners and
tangled adjacent walls, respectively.

As to this issue, the emerging diffusion model (DM) [11]
is a theoretically potential solution to generate, instead of
predict, better representations for the building vector extraction
task. On the one hand, in terms of the node detection sub-
task, the DM-based framework has reported its superiority
over mainstream predictive scheme in similar dense prediction
tasks, such as crisp edge prediction [12] and the single-node
heatmap prediction for pose estimation task [13]. Therefore, it
is reasonable to expect that the DM paradigm can also improve
the performance of the node detection sub-task in node-based
vector extraction methods. On the other hand, as to adjacency
matrix prediction sub-task, diffusion frameworks have also
been proved to be qualified to sparse predictions tasks like
graph learning [14], [15]. However, these pioneering works all
exhibit significant domain differences from the task of building
vector extraction, rendering direct application impractical. In
addition, there is currently limited exploration of combining
diffusion model architectures to simultaneously accomplish
dense and sparse prediction tasks. Therefore, the objective

of this paper is to explore feasible solutions for boosting
the diffusion like framework to the task of building vector
extraction, in order to fully leverage the advantages of this
architecture to achieve finer details in extracted results.

To achieve that, several challenges need to be solved:
To begin with, the widely adopted U-Net architecture in cur-

rent diffusion models may be suboptimal to tackle both node
detection and adjacency matrix prediction. The former task,
as dense prediction, is conventionally solved by a conditional
diffusion model (CDM) scheme which usually involves the
information fusion operation among different modalities, such
as image, timestep, and ground truth. In the multi-modal realm,
transformer-based architectures have been proven superior
over convolutional neural network (CNN) based structures,
owing to their implicit advantages in cross-attention mech-
anisms. In terms of the adjacency matrix prediction task,
the downsampling and upsampling mechanisms in U-Net
unavoidably lead to information loss, which is unacceptable
for the sparse graph like adjacency matrix. As shown in
Fig. 3, corrupting only a tiny fraction of an adjacency matrix
will severely and irreversibly damages the building topo-
logy graphs. Furthermore, priors like PolyWorld and TopDiG
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Figure 3. The organization structure of a building vector graph
and the impact of the subtle corruption on the adjacency
matrix. Red indicates directed connection between two nodes;
Blue circles mark the corrupted connection (i.e. edge).

have demonstrated that the long-term message propagation
of transformer architectures is crucial to stabilize adjacency
matrix generation. Therefore, we adjust the emerging diffusion
transformer (DiT) [16] scheme to conduct diffusion process
in the latent feature space and generate representations for a
sequential task-specific decoder.

Concretely, for the node detection, we introduce a hier-
archical diffusion transformer (HiDiT) to generate robust rep-
resentations for the sequential light weighting node decoder,
consequently producing node heatmap (see Section III-B1).
HiDiT utilizes multi-level boundary attentive maps, which are
yielded by a topology-concentrated Swin Transformer (TC-
Swin), as condition to generate representations for lightweight
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node heatmap decoder. As to the graph generation task, we
establish an edge biased graph diffusion transformer (EGDiT)
to implement message passing among all extracted nodes (see
Section III-B2). In EGDiT, node features are adopted to yield
the edge embedding to incorporate edge-level information in
the self-attention mechanism, thus enabling better representa-
tions generation for the following adjacency graph prediction.

Another challenge lies on the training difficulty and weak
ability of regular diffusion paradigms, i.e. DDPM and DDIM,
in the discriminative representation generation. The DDPMs
suffer from low-efficiency and inevitable uncertainty caused
by its stochastic and massive denoising steps. Targeting these
issues, denoising diffusion implicit models (DDIM) [17] re-
move the Markov chain restriction to allow skip-step sampling
and faster definite generation (see Section III-A). However, the
common practice of DDIM executes the ‘diffuse-denoise’ pro-
cedure once with a randomly sampled step and is supervised
by minimizing discrepancies between predicted noise and the
original one during training. During inference, the DDIM
scheme gradually denoises Gaussian noise to wanted outputs
for multiple steps. Although theoretically equivalent, some
prior works suggest that this scheme is easy to encounter over-
fitting problem in practice due to the difference between data
distributions of training and inference [18], [19]. Moreover,
supervising the model training directly by the specified per-
ceive results may obtain better discriminative representations
than vanilla noise supervision [12], [18]. Upon aforementioned
insights, we introduce an isomorphic training strategy (ITS)
that makes the training phase mirror the reasoning phase (see
Section III-C). That is to say, the training process starts from
the random Gaussian noise and is supervised by comparing
the prediction and GT of the desired final outcomes, akin to
the procedures in the inference phase.

In conclusion, in this study, we propose a transformer-
based latent diffusion model, named DiffVector, to directly
extract buildings vector graphs from remote sensing images.
DiffVector sequentially predicts nodes and their adjacency
matrix to extract vectorized buildings from RS images. Spe-
cifically, for node detection task, we design hierarchical diffu-
sion transformer (HiDiT) that generates representations for a
lightweight node detection decoder, conditioning multi-level
boundary attentive maps encoded from input RS images.
In terms of adjacency matrix prediction, we introduce edge
biased graph diffusion transformer (EGDiT) to produce latent
node descriptors, which are biased by edge information and
conditioned by representations from HiDiT. By using the
‘DiT+decoder’ scheme, we enable the diffusion based model
for both dense and sparse tasks and ultimately allow the
node-based building vector extraction. In addition, to alleviate
the uncertainty and overfitting issues, we implement the iso-
morphic training strategy (ITS) for both node detection and
graph generation stages. Based on ITS, the training stages
strictly mirror inference phases that denoise random Gaussian
noise to target results of each subtask. Our contributions are
concluded as follows:
(1) A denoising diffusion framework DiffVector is proposed

to directly extract building vector graphs from remote
sensing images. DiffVector deploys a ‘DiT+decoder’

scheme to detect node positions and predict their adja-
cency matrix. To our best knowledge, this is the first work
applying diffusion models to vector extraction tasks.

(2) A hierarchical diffusion transformer (HiDiT) is designed
to produce robust representations for detecting nodes and
mining features, conditioning multi-level boundary attent-
ive maps. An edge biased graph diffusion transformer
(EGDiT) incorporates edge features to generate reliable
visual descriptors for stable adjacency matrix prediction.

(3) An isomorphic training strategy (ITS) is introduced to
directly denoise random Gaussian noise to desired results
and is supervised during the training phase. ITS makes
training phases of HiDiT and EGDiT mirror their infer-
ence process to facilitate the training and enhancing the
capability of generating perceptive representations.

(4) DiffVector can achieve competitive performance com-
pared to segmentation-based, contour-based, and previous
node-based methods, especially with regard to topology
quality.

II. RELATED WORK

A. Deep learning based building vector extraction

In recent years, research on automatic building vector ex-
traction methods based on deep learning has flourished. The
current main technical approaches can be categorized into the
three types, namely segmentation-based, contour-based and
node-based.

Segmentation-based approaches are mainstream for the
building vector extraction task and typically follow a two-
step workflow of ”segmentation-vectorization”. Specifically,
the raster prediction probability map produced by the image
segmentation network is vectorized to obtain the final vector
topological structure of buildings. Most studies adopt CNN
frameworks like fully convolutional network (FCN) [20], U-
Net [21] and ResNet [22]. For example, [23] modified U-Net
by fusing the global representation of the first encoder layer
with each output of other encoder stages to obtain multi-scale
representations. [24] added residual attention at the end of
each encoder layer and incorporated attention gate modules
to refine the skip connections between multi-level encoder
and decoder stages, improving the aggregation of multi-scale
features. MSLANet [25] designs location channel attention
to process representations of stage 1,2,4 in ResNet and then
concatenates them with proposed multi-scale fusion module.
Since the emergence of Transformer architecture [26], some
researchers have investigated its talents in the building vector
extraction task. [27]–[30] employed Swin Transformer [31]
as the encoder to obtain multi-scale features for better build-
ing segmentation results. [32] adopted CNN-based encoder
and Transformer-based decoder to achieve efficient building
segmentation. [33] designed dual-path architecture to fully
integrate the advantages of both CNN and Vision Transformer
(ViT) [34].

Though aforementioned methods can obtain merit perform-
ance in the building segmentation, the raster results still
struggle with edge jaggedness, over-smooth corners, frag-
mentation, necessitating the optimization modules for refined
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results. [6] employed the Douglas-Peucker algorithm [35]
to simply and regularize the vectorized building contours.
[4] used directional field constraints to optimize building
contours; [5], [36]–[39] leveraged boundary information to
improve the accuracy and regularity of building segmentation
results, thus obtaining better vectorized buildings. Generally
speaking, segmentation-based methods are highly dependent
on the accuracy of segmentation results, and optimization
procedures are unavoidable for pleasant vector results at the
cost of significantly increase in the computational demand and
model complexity.

Contour-based methods can directly extract the building
vector from RS images without post-processing modules. The
idea is to first obtain an initial contour via image segmentation
or object detection, and then optimize the coordinates of
sampled contour nodes using methods such as circular convo-
lution or graph convolutional networks (GCNs) to obtain the fi-
nal building vector. These methods are highly dependent on the
accuracy of the initial contour. [40] used rectangular object de-
tection bounding boxes of building instances as initial contours
and then refined them via a GCN to obtain building polygons
from aerial images. In [41], building contours were initialized
by preset closed circles and then refined through a novel
cognitive graph convolution model. Unlike the above methods
that use initial contours with fixed templates, BuildMapper [8]
constructs adaptive initial contours for each building instance,
further improving extraction accuracy. These methods can
achieve end-to-end processing, do not require elaborate post-
processing steps and consume less computational resources.
The disadvantages are that they are only applicable to the
extraction of low-complex objects and are difficult to tackle
buildings with hollows, concave edges and other complicated
outlines. Furthermore, the accuracy of contour initialization
stage greatly and irreversibly impacts the final performance.

Node-based paradigms predict building contour nodes and
their topological connectivity to directly extract building vec-
tor from RS images. [42] designed two parallel heads to
simultaneously predict building corners and direction maps
recording orientation angles of each edge, eventually realizing
building vector extraction. [43] predicted both corners and
connecting nodes, as well as both forward and backward
direction of each node, achieving better building vector results.
Some other works [44]–[46] utilized recurrent neural network
(RNN) to literately track detected nodes from a start vertex to
construct the vector graph of each building instance. Recently,
PolyWorld [9] and TopDiG [10] propose to predict contour
nodes and their adjacency matrix to construct final building
vector results. Regardless of the varying topology construction
approaches adopted in current node-based building vector ex-
traction methods, the robustness of features is directly related
to the overall performance of the entire model. The predict-
style networks used in existing methods are all limited by a
minimum receptive field, making it difficult to capture key
features in extremely small regions. In this case, generative
style based on diffusion models, which do not rely on the
receptive field, may help alleviate this issue.

B. Diffusion models

Diffusion models have emerged as a powerful class of
generative models in the field of deep learning, particularly
for image synthesis tasks [47]–[50]. The foundational work in
diffusion models can be traced back to the early 2010s with the
introduction of the Denoising Score Matching (DSM) frame-
work [51]. Subsequent advancements were marked by the
introduction of the Denoising Diffusion Probabilistic Model
(DDPM) [11], which leverages a Markov chain to simulate
the data generation process. Each iteration within this chain
encompasses a denoising network tasked with the removal of
noise, thereby incrementally refining the data towards a coher-
ent image representation. Despite the high fidelity of the gener-
ated images, DDPMs are often encumbered by their protracted
sampling procedures. To address aforementioned issue of slow
sampling issue in DDPM, the Denoising Diffusion Implicit
Model (DDIM) [17] introduced a way by modifying the noise
schedule to allow for faster convergence, thus speeding up
the sampling process. Building upon these advancements, the
Latent Diffusion Model (LDM) [52] was introduced, which
operates the diffusion process within a lower-dimensional lat-
ent space. This approach not only enables more rapid sampling
but also enhances the quality of the samples when compared
to DDPMs. Furthermore, the LDM architecture facilitates
greater control over the generation process. The Diffusion
Transformer (DiT) [16] represents a significant departure from
traditional diffusion models by employing transformer-based
architectures. This innovation replaces the conventional neural
networks with transformers, which are adept at capturing long-
range dependencies within images, thus enhancing the model’s
generative prowess. Beyond the domain of image generation,
diffusion models have been successfully applied to a myriad
of generative tasks, including but not limited to image-to-
image translation [53]–[56], super-resolution [57]–[59], cloud
removal [60], [61] and so on.

C. Diffusion models for discriminative tasks

Discriminative tasks, unlike generative tasks, typically in-
volve semantic perception, understanding and interpretation.
Their outputs are a form of image patterns or discrete values
that humans can comprehend. In the past several years, there
have been a few of works introducing diffusion-like frame-
works to discriminative tasks, which can be roughly divided
into dense and sparse prediction tasks.

DM-based dense prediction tasks aim to generate a
value for each pixel of input images. A few of priors have
demonstrated the capability of the diffusion models in the
zero-shot transfer segmentation [62], panoptic segmentation
[63], [64], open-vocabulary segmentation [65]. medical image
segmentation [66], [67] and RS image segmentation [19], [68].
Other applications of DM frameworks in dense prediction
tasks include monocular depth estimation [18], [69], [70] and
RS change detection [71], [72]. Though these works achieve
competitive overall performance compared to conventional
dense prediction models, they tend to overlook the importance
of edge details. DiffusionEdge [12] leveraged latent denoise U-
Net to generate robust representations for edge detection task,
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obtaining impressive improvement of edge crispness. Diff-
Pose [13] proposed a node diffusion architecture to conduct
conditional single-node heatmap generation and achieved the
state-of-the-art(SOTA) performance in the video human pose
estimation. These two works illustrate the ability of DMs in de-
lineating object boundaries and detecting nodes, respectively,
which imply the feasibility of using DM framework to detect
contour nodes for building vector extraction.

DM-based sparse prediction tasks target discrete data and
are mainly explored in the graph learning field. Early DM-
based graph learning model EDP-GNN [73] infused continu-
ous Gaussian noise to adjacency matrices. [74] further mod-
elled node and edge attributes by a novel stochastic differential
equations. Afterwards, [75] found the discrete noise was more
beneficial for the diffusion forward process of graph structured
data than previous continuous Gaussian perturbations. Based
on this observation, DiGress [14] advanced discrete diffusion
process by progressively adding/removing edges or altering
node attributes, noticeably improving the model performance.
More recently, LGD [15] conducts diffusion processes by
adding continuous noise to encoded graphs features in the
latent space, enabling the capability in graph tasks of various
types and levels.

According to aforementioned works, the DM framework,
especially Latent Diffusion Model (LDM) paradigm has show-
cased impressive advantages and potentials in the discrimin-
ative tasks, including both dense and sparse prediction tasks.
However, it is rarely explored in RS domain and few works
investigate the collaborative utilization of different LDMs for
both dense and sparse tasks. Therefore, this paper introduces
DiffVector which adjusts the advanced Transformer-based
LDM, namely Diffusion Transformer (DiT) to implement the
building vector extraction task.

III. METHODOLOGY

A. Preliminaries

Denosing diffusion probabilistic model (DDPM). DDPMs
define a Markovian chain process by gradually adding noise
to sample data:

q (zt | z0) = N
(
zt |

√
ᾱtz0, (1− ᾱt) I

)
, (1)

which transforms data sample z0 to a latent noisy sample zt
for t ∈ {0, 1, . . . , T} by adding noise to z0. The constants
ᾱt :=

∑t
t=0 αt =

∑T
t=0(1− βt) are hyper-parameters and βt

represents the noise variance schedule. By applying the repara-
meterization trick, we can sample zt =

√
ᾱtz0 +

√
1− ᾱtϵt,

where ϵt ∼ N (0, I). During the training process, learning
a neural network fθ(zt, t) to predict z0 from zt under the
guidance of condition x. At the inference stage, predicted data
sample z0 is reconstructed from a random noise zt through
fθ. Sampling in DDPM is stochastic, so even with the same
initial noise, the prediction is uncertain.

Denoising diffusion implicit models (DDIM). In or-
der to accelerate the efficiency of the DDPMs, the Non-
Markovization method DDIM, is proposed [17]. Unlike
DDPMs, there is no noise added in the reverse process, making
it deterministic. Therefore, given an initial random noise,

sampling through DDIM will always yield the same result,
regardless of the number of sampling steps.

In this paper, we design two latent diffusion transformer-
based networks, namely HiDiT and EGDiT, to generate repres-
entations for node detection and adjancency matrix prediction
tasks, respectively. In our setting, instead of inconsistent
training and inference procedures in traditional DDIMs, we
conduct the ITS to establish a unified process for both phases.

B. Architecture

DiffVector adopts modified diffusion transformer architec-
tures to directly extract building vector graphs from remote
sensing imagery. As illustrated in Fig. 4. DiffVector firstly
introduces a hierarchical diffusion transformer (HiDiT) to
generate representations for extraction of potential contour
nodes and corresponding visual feature descriptors (see Sec-
tion III-B1). It is conditioned by multi-level boundary maps
yielded by a topology-concentrated Swin Transformer (TC-
Swin) (see Section III-B1). Afterwards, an edge-biased graph
diffusion transformer (EGDiT) is designed to produce reliable
representations for the prediction of the adjacency matrix (see
Section III-B2). To improve training stability, both HiDiT
and EGDiT conduct the proposed isomorphic training strategy
(ITS) that executes the procedure strictly same with the
inference phase (see Section III-C).

1) Hierarchical diffusion transformer: Unlike U-Net archi-
tecture adopted in previous works [19], [71], the introduced
hierarchical diffusion transformer (HiDiT) leverages the cross-
attention ability of the transformer architecture to conduct
conditional the denoising process. It is mainly composed of
a topology-concentrated Swin Transformer (TCSwin), stacked
HiDiT blocks and a lightweight node decoder. The proposed
TCSwin encodes input RS image to capture compact and
multi-level image features concentrated on building bound-
aries. These image features are received by DiT blocks as
conditions to yield more robust representation for the ultimate
node decoder. Details of each part are as follows:

TCSwin. We introduce a topology-concentrated Swin
Transformer as the image encoder to extract multi-level bound-
ary attentive maps as the condition for following HiDiT blocks
(see Fig. 5). The standard Swin Transformer consists of four
stages and receives an input image I ∈ R3×H×W . The shapes
of representation maps produced by these four stages are
128× H

4 × W
4 , 256× H

8 × W
8 ,512× H

16 ×
W
16 ,1024× H

32 ×
W
32 ,

respectively. To capture compact perception of building bound-
aries, we establish four boundary blocks to predict building
boundary masks from representation maps of each stage is
modified. By using stacked transposed convolution operations,
each of the boundary blocks yields a 1×H×W boundary pre-
diction map. Subsequently, all resultant maps are concatenated
into the boundary attentive maps F 4×H×W

s which provides
multi-level perception on the building boundary area.

HiDiT blocks. As shown in Fig. 6 (a), HiDiT blocks
input random Gaussian noise and additional conditions, i.e.
timesteps, concatenated boundary attentive maps F 4×H×W

s ,
and output generated representationsF (H

P ×W
P )×D1

g where D1

is the dimension and P is the patch size. Fs and t are
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Figure 4. The overview structure of DiffVector. Diffvector consists of two sub-tasks: node extraction and adjacency matrix
generation. We design corresponding diffusion models for each stream, named hierarchical diffusion transformer (HiDiT)
and edge biased graph diffusion transformer (EGDiT). HiDiT conditions multi-level boundary attentive maps to generate
representations for extracting key nodes and their corresponding visual descriptors, while EGDiT conditions node features to
yield visual descriptors for the predictions of the adjacency matrix. In the results visualization, yellow dots refer to detected
nodes while light blue arrows denote directed edges.

embedded by feature embedder and time embedder (TE),
separately. Feature embedder is a patch embedding module to
transform Fs into sequence-token embeddings. Time embed-
der first creates sinusoidal positional embeddings according
to timesteps t and adopts multilayer perceptron (MLP) to
generate timestep embeddings. Both embeddings are added
together to get conditional embeddings. As shown in Fig.
6(a), in each HiDiT block, an additional multi-head cross-
attention layer is utilized to integrate conditional information
with encoded noise.

Node decoder. As shown in Fig. 8a, the node decoder
firstly receives generated representations F

(H
P ×W

P )×D1
g and

obtains feature map FD1×H×W through an MLP layer and
an unpachify operation. Subsequently, two 1 × 1 kernel size
convolution blocks reduce the channel of F for the predicted
heatmap HH×W

f . After obtaining F and Hf , N object nodes
vi ∈ VN×2 and their corresponding feature descriptors di ∈
RN×D1 are extracted by non-maximum suppression (NMS)
[10] and grid sampling [8] approaches, respectively. These
node coordinates and descriptors are sequentially utilized to
produce conditions in the following EGDiT.

2) Edge biased graph diffusion transformer: Similarly, we
introduce an edge biased graph diffusion transformer (EGDiT)
to predict the connectivity among N extracted nodes in
the form of the adjacency matrix AN×N . EGDiT consists
of stacked diffusion blocks and a light graph decoder. The

transformer based architecture of EGDiT ensures that each
predicted node vi owns a global perception of all other nodes
in the entire V set, facilitating reliable learning of adjacency
graphs. Moreover, in order for the better understanding of
graph structure, an edge biased attention (EBA) is incorporated
in the self-attention mechanism within EGDiT blocks. The
details of aforementioned three designs are as follows.

EGDiT blocks. Fig. 6(b) shows the structure of EGDiT
blocks, which is a conditional diffusion scheme. In EGDiT,
one of the input conditions is embedded descriptors demd ∈
RN×(D1+2) that concatenates detected nodes V ∈ RN×2

and visual description d ∈ RN×D1 . Receiving demd ∈
RN×(D1+2), a two-layer MLP merges node positions and cor-
responding visual descriptors to produce positional descriptors
dpos ∈ RN×D2 . Next, EGDiT blocks process the dpos and
output generated visual descriptors dN×D2

g . Inspired by [16],
it employs adaptive layer normalization (adaLN) instead of
the standard layer normalization method. Specifically, EGDiT
conducts regression on the dimensional scale and shift para-
meters, denoted as λ and µ respectively, leveraging the sum of
the embedding vectors of additional conditions. Additionally, it
incorporates dimension-wise scaling parameters denoted as γ,
which are zero-initialized and applied just prior to any residual
connections within each EGDiT block. This zero-initialization
ensures that each block functions as an identity operation,
thereby expediting training.
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Edge biased attention. EGDiT manages to incorporate
edge information for the better graph understanding by con-
ducting edge biased attention (EBA) in self-attention (SA)
mechanism of EGDiT blocks. As shown in Fig.7, the differ-
ence between regular self-attention in Transformer architec-
tures and the proposed EBA is that the EBA produces extra
edge embeddings to bias each attention matrix in the self-
attention mechanism. In the EGDiT blocks, query, key and
values for SA modules are all derived from visual descriptors
dN×D2
g . Consequently, the attention matrix can be interpreted

as matching scores between node pairs, which implicitly en-
code edge features. In this context, edge embeddings, directly
computed from dN×D2

g via the edge embedder (Fig.7(c)), serve
as the shortcut to each attention matrix, stabilizing the SA
processes.

Concretely, to obtain edge embeddings, we firstly reshape
generated visual descriptors dN×D2

g to D2 ×N and repeat it
in a new channel to dD2×N×N

r . After that, the dD2×N×N
r and

its transposed version are concatenated and reshaped as the
raw edge features e

(N×N)×(D2×2)
r . Then the e

(N×N)×(D2×2)
r

is fed into an MLP layer and yield the final edge embeddings
eh×N×N , where h denotes the number of transformer heads.
As shown in Fig. 6(b), an edge biased attention layer adds
edge embeddings to the encoded noise after multi-head self-
attention.

Graph decoder. Generated visual descriptors dg are fed
into the graph decoder for the adjacency graph predictions.
As shown in Fig. 8b, the graph decoder consists of a two-
layer MLP and two 1 × 1 kernel convolutional layer, a

batch normalization layer, and a rectified linear unit (ReLU).
In EGDiT, two graph decoders, termed by clockwise and
counter-clockwise graph decoders, with the same structures
are adopted to predict clockwise and counter-clockwise con-
nectivity between node pairs. The graph decoders receive
the descriptors dg and generates two directional adjacency
matrices A1 ∈ RN×N and A2 ∈ RN×N , which record
clockwise and counter-clockwise connections among N de-
tected nodes, respectively. These two graphs are added up to
export the final directional adjacency graph AN×N . Following
common practice [9], [10], the AN×N is optimized through
the Sinkhorn algorithm [76].

C. Isomorphic training strategy

During training, both HiDiT and EGDiT follow an iso-
morphic training strategy (ITS) to establish training as the
mirror of inference process (Algorithm 1). As shown in Fig. 9,
two main characteristics distinguish ITS from previous DDIM
based works [19], [68], [71]. On the one hand, preliminary
experiments (see Table I) and existing work [18] have reported
that the regular DDIM paradigm which inputs noisy ground
truth (GT) targets for training (see Fig. 9(a)) is prone to
encounter overfitting problem when solving dense prediction
tasks. Therefore, ITS starts from a random Gaussian noise in-
stead of noisy GT and gradually denoises the initialized noise
to desired outcomes. On the other hand, recent advanced DM-
based dense and sparse prediction models have demonstrated
that directly supervising the training based on final targets
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can achieve better performance than the conventional noise
supervision [12]–[14], [18]. Therefore, the training objective
of ITS is minimizing the discrepancy between predicted and
ground truth outcomes (i.e. heatmap in HiDiT and adjacency
matrix in EGDiT), rather than noise adopted in generative
DMs.

Concretely, in both training and inference, we firstly ini-
tialize a Gaussian noise with the same shape as wanted
outcomes and evenly sample multiple timesteps from the
total sampling steps t ∈ {0, 1, . . . , T}. Then the conditional
denoising process is executed to yield desired outputs in a step-
by-step manner. The denoising loop is applied to the entire

‘DiT+decoder‘ structure. It means that each step can produce
an intermediate output which is corrupted by next-level noise
and acts as the input of the next step. Furthermore, the learning
of this denoising process is based on the output results, rather
than predicted noise at each step. Details of adopted noise
schedule, time embedder and training objective are as follows:

Noise schedule. Noise schedule is a very important hyper-
parameter, which controls the difficulty of denoising procedure
[18]. During the training, as the input of the model, the degree
of noise in zt is completely determined by noise schedule
βt. Different data distributions often show different degrees
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Algorithm 1 The pseudo code for training and inference procedures with the isomorphic training strategy (ITS). This
process is executed for both HiDiT and EGDiT. The required input ‘cond’ denotes multi-level boundary attentive maps
F 4×H×W
s for HiDiT and positional node descriptors dpos ∈ RN×D for EGDiT.

def train_and_infer_with_ITS(cond):
# condition embedding
cond_emb = cond_embedder(cond)
# initilize a random Gaussian noise
noise = normal(0, 1)
# in this work sample_number=10 (see Section 4.1.2)
for step in range(sample_number):

# time intervals
t_now = 1- step / steps
t_next = max(1 - (step + 1 + td) / steps, 0)
map_denoised = DiTBlocks(noise, cond_emb)
map_pred = decoder(map_denoised)
# update noise for the next time step
pred_noise = (noise - sqrt(sigmoid(t_now)) * sigmoid(map_pred)) / sqrt(sigmoid(-t_now))
noise = sigmoid(map_pred) * sqrt(sigmoid(t_next)) + pred_noise * sqrt(sigmoid(-t_next))

if train:
loss = objective_func(map_pred, gt)
return map_pred, loss

else:
return map_pred

of information redundancy, so the same level of independent
noise destroys information differently. The optimal schedule
for denoising may not yield the same optimal results within
a different data distribution. Furthermore, an inadequate noise
schedule could result in insufficient training regarding certain
noise levels. Following [18], we utilize the improved cosine
schedule:

βt = −log cos

(
t/T + s

1 + s
· π
2

)−2

− 1, (2)

where small offset s is introduced to prevent β0 from becom-
ing excessively small for precise prediction and the cosine
function is employed to ensure that βt changes gradually,
particularly when t approaches 0 or T , leading to a more stable
generation process.

Time embedder. The time embedder (TE) adopts sinus-
oidal position embedding to inject timestep information, which
is also vitally important in diffusion model:

TEt,d =

sin
(

t
mp2d/dim

)
, if d is even

cos
(

t
mp2(d−1)/ dim

)
, if d is odd,

(3)

where t denotes timesteps, d is the dimension index and
dim represents output dimension. mp controls the minimum
frequency of the embeddings.

Objective function. During HiDiT training, the final
heatmap Hf is supervised by means square error (MSE) loss
Ldt as follows:

Ldt = M
(
Hf − H̄gt

)2
, (4)

where M denotes the arithmetic mean operation and H̄gt is
the ground truth heatmap of shape H ×W .

In the EGDiT training procedure, the predicted adjacency

graph is supervised by a binary cross-entropy loss:

Lgh = −(A log(A) + (1−A) log(1−A)), (5)

where A represents the predicted adjacency graph and A is
the adjacency graph label. To solve the conflicts and balance
problems between the losses of various tasks during the
training process and improve the model training speed and
training quality, we adopted the multi-task loss (MTL) [77] as
follows:

L =
∑
τ∈T

1

2σ2
τ

· Lτ + ln(1 + σ2
τ ) (6)

where τ indicates task loss index, T counts losses including
the heatmap loss Ldt and the adjacency matrix loss Lgh. σ is
learnable parameters.

IV. EXPERIMENTAL SETTINGS

A. Implement details

Network architectures. For TCSwin, the image encoder
adopts Swin Transformer-B. HiDiT/EGDiT blocks consist of
6/12 transformer blocks with 384/768 feature hidden dimen-
sions and 12/12 heads. Patch size P adopted in HiDiT is set
as 8. The sample number is set to 10 in both the training
and inference procedure (see Section V-A2) and time schedule
ranges from 0 to 0.999. For each image, we extract N = 320
nodes, which can delineate contours of all building instances
in most cases. All parameters are trainable.

Training. To begin with, DiffVector pretrains the TCSwin
by adding a light decoder to conduct Eq. 4 supervised heatmap
prediction. Afterward, the entire HiDiT is trained to detect
precise nodes and obtain reliable features which are supervised
by Eq. 10. Finally, the DiffVector is trained as a whole to
output the building vector graphs, which is supervised by the
Eq. 6. The training stage is executed utilizing Adam optimizer,
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10−4 learning rate and early stopping strategy. The supporting
platform is equipped with NVIDIA Tesla V100 32GB GPU
and Intel Xeon Gold 5218 CPU @ 2.3GHz.

B. Datasets

DiffVector is evaluated on Inria Aerial Image Labeling
dataset (Inria) [78] and CrowdAI Map Challenge dataset
(CrowdAI) [79], covering polygonal buildings extraction from
both aerial and satellite images.

Inria dataset provides a training set of 180 aerial RGB
images and their binary annotation maps for the building
segmentation task. The raw images are evenly acquired from
5 cities and are 5000×5000 pixels with a spatial resolution
of 0.3m. We split the first and last images of each city into
validation set, resulting in 170 and 10 samples for training
and validation, respectively. Then all raw images are cropped
to tiles of 320×320 pixels with a stride size of 320 pixels and
tiles without buildings are discarded.

CrowdAI dataset is comprised of 280741 and 60317 World-
View3 satellite images for training and validation. These
images contain RGB spectral bands and each image measures
300×300 pixels with a spatial resolution of 0.3m. Contours
of building instances in all images are initially recorded in
the form of MS COCO format. The small version of the
validation set, which holds 1820 samples is adopted in this
work. Notably, the raw dataset has been found to contain
severe duplication and data leakage problems [80] trough the
hashing method. Therefore, we followed [80] to filter out all
duplicated samples from both training and validation sets.
In addition, training samples duplicated or augmented from
validation samples were also removed. The resultant training
and validation sets contain 67440 and 1480 samples. The
resultant training and validation sets contain 67440 and 1480
samples.

C. Evaluation metrics

We comprehensively evaluate the performance of DiffVector
from three perspectives, namely mask-wise, boundary-wise
and graph-wise metrics.

Mask-wise metrics are calculated from GT and predicted
binary segmentation masks, which are rasterized from extrac-
ted building graphs (Fig. 10). During the evaluation, metrics
of the thematic vector extraction are calculated through a two-
class (foreground and background) confusion matrix (CM). In
a CM, the true positive (TP) sum up the diagonal values, the
false positive (FP) and false negative (FN) are the summation
of column and row non-diagonal values, respectively. The
mask-wise accuracy of DiffVector is measured by averaging
intersection over union (mIoUmask) of foreground and back-

ground, following Eq. 7.

TN = SUM(CM)− (TP + FN + FP )

OA =
TP + TN

TP + FN + FP + TN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2× Precision × Recall

Precision + Recall

IoU =
TP

TP + FP + FN

(7)

Boundary-wise metrics measures differences between pre-
dicted and GT boundary region maps. The involved metrics in-
clude overall accuracy (OAbdy), precision (Precisionbdy), recall
(Recallbdy), F1-score (F1-scorebdy) and mean IoU (mIoUbdy).
They are calculated following Eq. 7 and all boundary-wise
metrics average the scores of both foreground and background
for more comprehensive evaluation. By focusing on buffered
building boundaries, these metrics are more sensitive to errors
of predicted boundaries. As shown in Fig. 10, to obtain the
boundary region masks, we first transform extraction polygons
to one-pixel boundary masks and then apply dilation operation
to them based on the 5×5 window size kernel. The GT
boundary area maps are calculated from GT segmentation
masks through edge detection and dilation operation.

Graph-wise metrics directly evaluate the topology complete-
ness of predicted building vector graphs (Fig. 10). We adopt
the average path length similarity (APLS) which studies bid-
irectional differences between lengths of all unique Dijkstra’s
shortest paths [81] in the ground truth graph vector graph Ḡ
and predicted graph G. The APLS metric scores fall in the
range of 0 (poor) to 1 (perfect). Given an image sample, the
APLS for the thematic vector extraction is calculated as in
Eq. 8:

APLS =
2

1
SG→Ḡ

+ 1
SG←Ḡ

, (8)

where

SG→Ḡ = 1− 1

NU

∑
min

{
1,

|L(a, b)− L(a′, b′)|
L(a, b)

}
(9)

denotes the difference score of path lengths mapping from G
to Ḡ; L(a, b) indicates the Dijkstra’s shortest path from node
a to node b in Ḡ while L(a′, b′) is the predicted one in G;
NU means the number of unique paths for this class.

V. RESULTS AND DISCUSSION

A. Ablation study

To verify the effectiveness of designed components and
parameters in DiffVector, we conduct comprehensive ablation
experiments on the Inria dataset. Specifically, the import-
ance of different network architectures in HiDiT and EGDiT
is evaluated, including with/without ITS strategy, edge bias
attention (EBA), multi-task loss (MTL) and whether adopt
diffusion scheme or not (Section V-A1). Then we investigate
the influences of different sampling steps in accuracy and
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Figure 10. The schematic diagram of performing mask-wise, boundary-wise and graph-wise evaluations.

model complexity (Section V-A2). Furthermore, the runtime
comparison between ITS and previous diffusion paradigms is
conducted in the Section V-A3.

1) Importance of different components: Experiments in
Table I measure the effectiveness and contributions of different
components in DiffVector. The baseline architecture adopts all
proposed designs (i.e. HiDiT, EGDiT, EBA, ITS and MTL)
and the effectiveness of each component is measured by the
accuracy changes after disusing it. All experiments are trained
with a batch size of 12, a fixed learning rate of 10−4, the
Adam optimizer and the early stop strategy.
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From the perspective of sub-tasks, the diffusion paradigm
is crucial for both node detection and adjacency graph gener-
ation tasks. Aiming at node detection, HiDiT blocks generate
representations conditioning the image features extracted by
the TCSwin (see Section III-B1). The resultant representations
are utilized not only for node detection but also serve as
conditions for the generation of visual descriptors in the

EGDiT. Therefore, the changes in HiDiT lead to more in-
fluences on the final performance of DiffVector than EGDiT.
To be specific, replacing the diffusion-based HiDiT with sole
TCSwin results in remarkable decreases in all metric scores
with 4.81%, 5.14% and 7.05% lower mIoUmask, mIoUbdy

and APLS. As to the adjacency graph prediction task, using
diffusion-based EGDiT produces better results than deploying
standard Vision Transformer with 0.48%, 0.71% and 2.83%
increases in mIoUmask, mIoUbdy and APLS.

From the perspective of key components and training
strategies, the importance of the ITS has been demonstrated
for both HiDiT and EGDiT, but to different degrees of
criticality. As illustrated by Fig. 11, without ITS, HiDiT
encounters severe overfitting and eventually makes the training
of following EGDiT infeasible. Somewhat differently, instead
of the complete failure, lacking ITS in EGDiT leads to an
accuracy drop on all three levels of metrics with 0.66%, 1.00%
and 2.45% lower mIoUmask, mIoUbdy and APLS, receptively.
Furthermore, as to EGDiT, the edge biased attention (EBA)
benefits the performance with 0.18%, 0.27% and 0.92% in-
creases in mIoUmask, mIoUbdy and APLS. Finally, training
DiffVector the multi-task loss improves the performance with
0.12%, 0.21% and 0.83% increases in mIoUmask, mIoUbdy

and APLS.

2) Influences of sampling number: The sampling number
determines the granularity (i.e. steps) of sampling from Gaus-
sian Noise during the denoising process. It not only affects the
prediction quality of the final results, but also directly leads to
changes in model size and computing expense of DiffVector.
Therefore, we analyze the influences of sampling numbers
by measuring the accuracy, total parameter size (#Params.)
and multiply-accumulate operations (MACs). Studies in this
section adopt DiffVector with all proposed components and
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Table I. Impacts of key components.

HiDiT blocks HiDiT ITS EGDiT blocks EGDiT ITS EBA MTL mIoUmask mIoUbdy APLS

! ! ! ! ! ! 85.87 71.16 44.63

Using Sole TCSwin ! ! ! ! 81.06(-4.81) 66.02(-5.14) 37.58(-7.05)

! ! Using Standard Vision Transformer ! 85.39(-0.48) 70.45(-0.71) 41.80(-2.83)

! # ! ! ! ! Encounter Failure due to Overfitting

! ! ! # ! ! 85.21(-0.66) 70.16(-1.00) 42.18(-2.45)

! ! ! ! # ! 85.69(-0.18) 70.89(-0.27) 43.71(-0.92)

! ! ! ! ! # 85.75(-0.12) 70.85(-0.21) 43.80(-0.83)

Table II. Influences of sampling steps on network complexity and accuracy. ‘A+B+C’ in #Params. and MACs columns donate
sequentially adding up statistics of TCSwin, HiDiT excluding TCSwin and EGDiT.

HiDiT Steps EGDiT Steps #Params.(Mb) MACs (T) mIoUmask mIoUbdy APLS

1 1 121.94+16.28+135.77=273.95 0.52+0.03+0.38=0.93 Encounter Failure due to Overfitting

5 5 121.94+16.28+135.77=273.95 0.52+0.13+0.54=1.19 85.83 70.96 43.21

10 10 121.94+16.28+135.77=273.95 0.52+0.26+0.75=1.53 85.87 71.96 44.64

20 20 121.94+16.28+135.77=273.95 0.52+0.52+1.17=2.21 86.12 71.22 44.05

Table III. The efficiency comparison between ITS and two
conventional diffusion paradigms. ‘[A, B]’ in Steps donate
the sample step during training and inference, respective. FPS
means frame per second.

Paradigm Steps Training FPS Inference FPS

DDPM [1, 1000] 4.35 0.28

DDIM [1, 10] 4.45 13.31

ITS [10, 10] 3.99 13.15

training strategies before (see Section V-A1). The timesteps
are evenly sampled from the complete timestep set 0-1000
with fixed interval strides. Limited by accessible computing
resources, we only test 4 different settings of the sample
number, namely 1, 5, 10 and 20, as presented in Table II.
Note that in DiffVector, the ITS scheme determines that
the sampling number is identical between the training and
inference phases, as described in Section III-C.

Experiments reveal that more sampling steps keep improv-
ing overall performance with the increases in mIoUmask from
85.83% to 86.12%. While the topology quality of results
reaches peak when the sampling number is 10 and decreases
after that. In terms of complexity analysis, enlarging the
sampling number does not increase the total parameter size
of DiffVector, but it exponentially inflates the number of
computation operations. Given the aforementioned statics, we
set the sampling number as 10 to achieve the best trade-off
between the accuracy and efficiency.

3) The efficiency analysis of different diffusion paradigms:
We further evaluate the running speed of DiffVector with dif-
ferent diffusion schemes during training and inference phases
via the metric of frame per second (FPS). The DDPM and
DDIM paradigms share the same training procedure where one
’diffuse-denoise’ process occurs, thereby they report similar

runtime for the training stage. In contrast, the proposed ITS
iteratively denoises from Gaussian noise to final predictions,
which conducts multiple ’diffuse-denoise’ procedures and
leads to slower training FPS than DDPM and DDIM. During
the inference stage, ITS and DDIM implement similar ’skip-
step’ denoise process, thus they obtain a similar running
efficiency which is much faster than step-by-step denoise
scheme in DDPM.

It is worth noting that, despite the theoretical expectation
that the training and inference phases of ITS should consume
similar amounts of time due to their strictly identical proced-
ures, there is actually a significant difference in the calculated
FPS. This discrepancy arises because, in our FPS calculations,
we intentionally retained processes that are exclusive to the
training phase but not needed for inference, aiming for a
more realistic representation of practical applications. Such
processes encompass online adjacency matrix label generation,
loss backpropagation, and model parameter updates.

B. Comparison with state-of-the-art methods

We compare DiffVector with other relevant state-of-the-
art (SOTA) vector extraction approaches on the Inria and
CrowdAI datasets from the quantitative and qualitative per-
spectives.

1) Quantitative comparison: Table IV and Table V present
the quantitative results of different approaches on the Inria
and CrowdAI datasets, representative. For the Inria dataset,
DiffVector achieves state-of-the-art performance with respect
to all mask-wise, boundary-wise and graph-wise metrics,
reporting 85.87% mIoUmask, 71.16% mIoUbdy and 44.63%
APLS, respectively. It outperforms other modern approaches
with at least 1.2%, 4.47% and 5.97% higher mIoUmask,
mIoUbdy and APLS. Among segmentation-based methods,
HD-Net establishes an extra branch to perceive boundary
features and extracts more accuracy and regular building
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Figure 12. Visual comparisons on the Inria dataset. Green lines draw the vectorized segmentation results. Red, blue, yellow
and purple rectangles indicate the superiority of DiffVector over other methods in non-trivial scenarios, namely, hollows, dense
buildings, adjacent walls and occluded buildings.
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Figure 13. Visual comparisons on the CrowdAI dataset.
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Table IV. Quantitative comparisons on the Inria dataset.

Method mIoUmask OAbdy Precisionbdy Recallbdy F1-scorebdy mIoUbdy APLS

Segmentation-based:

HRNet 82.42 93.00 77.29 72.88 74.83 64.59 35.42

DeepLabv3+ 84.67 93.39 78.46 75.59 76.93 66.69 38.50

TransUnet 83.26 93.01 76.98 75.14 76.02 65.71 37.66

UNetFormer 80.00 92.30 74.48 71.38 72.79 62.55 31.89

HD-Net 83.88 93.60 79.38 75.74 77.39 67.22 37.70

Contour-based:

DeepSnake 57.58 91.91 71.04 58.20 58.93 52.79 26.56

BuildMapper 64.42 93.27 78.34 64.23 65.97 58.88 39.46

Node-based:

TopDiG 82.92 93.61 79.82 74.08 76.54 66.41 38.66

DiffVector 85.87 94.57 82.85 79.28 80.93 71.16 44.63

Table V. Quantitative comparisons on the CrowdAI dataset.

Method mIoUmask OAbdy Precisionbdy Recallbdy F1-scorebdy mIoUbdy APLS

Segmentation-based:

HRNet 83.60 91.06 72.71 78.40 75.10 64.33 42.73

DeepLabv3+ 90.96 94.51 82.90 82.20 82.54 72.89 41.55

TransUnet 90.21 94.28 82.17 81.40 81.78 71.98 40.24

UNetFormer 87.63 93.41 79.49 78.06 78.75 68.52 38.13

HD-Net 90.45 94.68 83.66 82.14 82.89 73.34 39.53

Contour-based:

DeepSnake 58.09 92.17 72.77 57.60 58.65 52.45 33.62

BuildMapper 76.66 93.06 78.09 69.28 71.24 62.46 22.16

Node-based:

TopDiG 87.89 93.76 80.86 78.17 79.43 69.33 42.42

DiffVector 88.90 94.17 81.90 80.69 81.27 71.42 45.48

polygons than other segmentation-based approaches. Contour-
based approaches exhibit the worst performance in all three-
fold evaluations. Within the scope of node-based methods,
DiffVector exhibits superiority over TopDiG in all evaluated
metrics, especially gaining much better topology completeness
with 5.97% higher APLS.

For the CrowdAI dataset, DiffVector still produces reliable
and stable predictions with competitive accuracy scores w.r.t
other modern approaches. Particularly, it reports the highest
APLS score of 45.48% among all methods, which implies
the distinctive topology completeness of its predictions. Dee-
pLabv3+ obtains the best overall performance with the highest

mIoUmask while HD-Net achieves the best scores on the
OAbdy, Precisionbdy, F1-scorebdy and mIoUbdy. It is worth
noting that though generally achieving SOTA performance,
HD-Net ranks second to last on the APLS metric, perhaps
due to its disadvantages in preserving topological details.

2) Qualitative comparison: Fig. 12 and Fig. 13 exhibit
the visual comparison among DeepLabv3+, TransUnet, HD-
Net, BuildMapper, TopDiG and DiffVector on the Inira and
CrowdAI datasets, respectively. These comparisons evidently
demonstrate that DiffVector owns the ability to detect hol-
lows, delineate regular building polygons, and partially tackle
occlusion and high density issues.
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(a) Prediction (b) Detected nodes (c) Heatmap (d) Ground Truth

Figure 14. An typical example that DiffVector fails to deal with the extreme occlusion issue and adjacent walls.

As shown in the Fig. 12 third and fifth columns, DiffVector
is always capable of recognizing hollows within building
instances. By contrast, prevailing approaches DeepLabv3+,
TransUnet, HD-Net, BuildMapper and TopDiG encounter
more or less failure cases, implying their instability in this
regard. In the Fig. 12 second column, purple rectangles imply
that DiffVector and previous node-based approach TopDiG
showcases capability of tacking the occlusion from trees. This
advantage may be attributed to their topology-concentrated
image encoders. Samples in Fig. 12 and Fig. 13 illustrate
that building polygons extracted by DiffVector always appear
more regular than those produced by other works. Within the
realm of node-based paradigm, compared to previous TopDiG,
DiffVector delineates more sharp building contours and reveals
distinguished advantages in some non-trivial scenes, such as
densely distributed buildings with adjacent walls (Fig. 12
yellow rectangles) and building occluded by trees (Fig. 12
purple rectangles). In addition, samples in Fig. 13 release the
common data distribution in CrowdAI that the vast majority
of scenes only contain low-complexity building instances.
Consequently, the involved approaches perform well in most
cases. The rareness of non-trivial scenarios may be an essential
reason why DiffVector fails to show superiority over other
methods in both quantitative and qualitative comparisons.

According to the quantitative and qualitative comparisons,
unique advantages which differing the proposed DiffVector
from various previous works can be summarized. Firstly, com-
pared to segmentation-based approaches, DiffVector always
delineates more regular building outlines and directly outputs
building vector without any post-processing procedures, such
as vectorization, regularization and simplification. Secondly,
compared to contour-based methods, the DiffVector avoids
misdetection errors from contour initialization step and is
capable of tackling buildings with hollows, concave outlines
and various scales. Finally, compared to previous node-based
models, the DiffVector showcases superiority in non-trivial
scenarios like adjacent or occluded buildings.

VI. LIMITATIONS AND FUTURE WORK

Though DiffVector have exhibited pleasant performance,
it still struggles with two main issues. On the one hand,

Table VI. The runtime comparison between DiffVector and
other methods in the Inria. FPS indicates frame per second.

Method Training FPS Inference FPS

Segmentation-based:

HRNet 13.34 19.39

DeepLabv3+ 5.66 19.09

TransUnet 3.21 16.86

UNetFormer 6.39 21.62

HD-Net 13.00 15.73

Contour-based:

DeepSnake 22.51 25.04

BuildMapper 4.12 60.09

Node-based:

TopDiG 8.30 13.45

DiffVector 3.99 13.15

DiffVector showcases some ability in tackling building shaded
by trees and building walls closed to each other, such as Fig. 12
second column and Fig. 13 second column. However, it still
fails to deal with some more extreme cases. As shown in
the Fig. 14 red rectangle, the lush canopy obscures a part
of the target building and consequently DiffVector loses the
perception of that part, resulting in incomplete the predicted
building vector graph. Besides, green rectangles indicate that
DiffVector have troubles in distinguishing walls that are very
close to each other. Fig. 14c clearly illustrates the subtle
recolonization of the gap between these adjacent walls. On
the other hand, as shown in Table VI, DiffVector exhibits less
optimal training and inference runtimes when juxtaposed with
other cutting-edge methodologies. The underlying principle
of the diffusion framework dictates that multiple denoising
steps are indispensable for attaining satisfactory generation
outcomes, consequently impeding the runtime efficiency of
DiffVector.

To address the occlusion issue, we plan to adopt the popular
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multi-modal paradigm [82] to integrate multi-source data, such
as synthetic aperture radar (SAR) [83] and multi-spectral
images [84], to obtain perception under trees. As to adjacent
walls, a potential solution is to establish an extra branch to
refine the extracted node coordinates [8], which supervised by
multi-task losses [85], [86]. In order to speed up the runtime
of diffusion procedures, approaches such as model distillation
[87], feature cacheing [88] and rectified flow [89] can be
explored to accelerate the network computing or reduce the
number of denoise steps.

VII. CONCLUSION

In this work, we have introduced the DiffVector, which
is a novel denoising diffusion framework to directly extracts
building vector graphs from remote sensing images. In the
DiffVector, a hierarchical diffusion transformer (HiDiT) is
established to generate robust representations for detecting
candidates contour nodes and mining corresponding nodes fea-
tures. It is conditioned by multi-level boundary attentive maps
encoded from input images through a topology-concentrated
Swin Transformer (TCSwin). Subsequently, we propose an
edge biased graph diffusion transformer (EGDiT) that takes
node features as conditions to generate visual descriptors
for the prediction of the adjacency matrix. In EGDiT, we
replace the standard self-attention mechanism with an edge
biased attention (EBA) to incorporate edge features for better
prediction of adjacency graphs. Furthermore, an isomorphic
training strategy (ITS) is executed to formulate training pro-
cedures of both HiDiT and EGDiT as the exact mirror of the
denoising process during the inference stage. Ablation analysis
has evidently demonstrated the importance and effectiveness of
introduced components. Quantitative and qualitative compar-
isons with other modern approaches reveal that DiffVector is
capable of achieving competitive performance in the building
vector graph extraction task. Meanwhile, the adeptness of
DiffVector releases the potential of the diffusion paradigm
in the vector extraction field. We hope this study provides
valuable insights for further works in the realm of vector
extraction.
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